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Abstract. A subpansive tree is a rooted tree that gives a partial order of
nonterminal symbols of a context-free grammar. We formalize subpansive
trees as background knowledge of CFGs, and investigate query learning
of CFGs with the help of subpansive trees. We show a restricted class of
CFGs, which we call hierarchical CFGs, is efficiently learnable, while it
is unlikely to be polynomial-time predictable.

1 Introduction

Language acquisition is one of the central interests to both theoretical computer
science and linguistics. In computational learning theory, Angluin [2] showed
that the regular languages are efficiently learnable, proposing a polynomial-time
algorithm on finite automata with terminal membership queries and terminal
equivalence queries. Since then, the learnability of context-free classes has come
to be the next research topic, and a number of studies have been reported un-
der different acquisition scenarios: Angluin [1] allowed nonterminal membership
queries for learning a k-bounded context-free grammar (CFG); Sakakibara [25,
26] and Sakamoto [27] proposed learning algorithms from structured examples
with structural queries; Ishizaka [17] dropped nonterminal membership queries
for a simple deterministic CFG, but with equivalence queries extended to ask
about a grammar from the outside of the target class.

For natural language acquisition by humans, on the other hand, children
are not always corrected when they produce a “wrong” utterance, or even told
when they produce or hear a “wrong” utterance; let alone what is wrong about
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it. That is, there is no consistently reliable teacher, and structural information
is scarcely given. Thus, it is usually held that humans are endowed with some
kind of “innate” grammatical knowledge that enables them to acquire a target
grammar without negative examples [6, 23]. This “innate” grammatical knowl-
edge of humans must be abstract and adaptive enough to develop into concrete
particular grammars [9, 11], of more than 4,000 languages, by modest estimate,
known in the world.

In this paper, we introduce the concept of a subpansive tree that formalizes
a background knowledge to characterize CFGs. A subpansive tree is a rooted
tree that represents a partial order on nonterminal symbols of a target CFG.
This partial order on nonterminals models a part of the “innate” grammatical
knowledge of humans. In natural languages, sentences are not directly made
up from words but internally structured; words constitute phrases, and phrases
constitute sentences [10, 18]. In these structures, we can observe categorical in-
heritance to a phrase from its constituent head (a part of speech), so that a noun
phrase is projected from a noun, for example. This endocentricity [4] is the ori-
gin of the context-free base [7], and the opposite exocentricity and discontinuous
constituency/dependency are the principal sources that natural languages are
considered not to be properly included in the context-free class [8].

The subpansive tree encodes the categorical inheritance found in phrase
structures of natural languages, and helps to derive productions of a target CFG
(‘expansion rules’ to generate sentences) by guessing a nonterminal symbol into
which a substring can be intrajected as ‘subpansion.’ A relation from an ancestor
nonterminal A to its descendant nonterminal B implies that from an abstract
nonterminal A, specific strings containing B will be obtained in the succeeding
productions.

This use of a subpansive tree captures an intuition about the importance of
structural information for grammatical inference that is different from the one
employed in [25–27]. Rather than to use specific structural information from
examples and queries, the subpansive tree is given as an abstract background
knowledge about structures, from which a particular grammar — instructions to
build specific structures — develops. Human children are not directly exposed
to structural information of sentences, but learn to divide them into phrases and
down to words; they lean to structure a string of words into phrases, and up to
a sentence, i.e., terminal string into nonterminal symbols, and up to the root.
Yet, a string of a context-free language (CFL) can be structurally ambiguous.
For instance, a string of terminal symbols abc can have either of the following
CFG structures:

S

A

a b

B

c

S

A

a

B

b c



Here, the set of symbols are exactly the same, but the structures, and hence the
CFGs (productions) that generate them, are distinct. This point is already made
in [25], but this very ambiguity is what must be resolved by humans through
learning a particular grammar, not to be pre-solved as examples or hints; that is,
what it means to learn a grammar is to learn how to structure strings of terminal
symbols. Since the number of parts of speech is quite limited and the categorical
inheritance readily determines what phrase can expand into what kind of strings
of words in natural languages, we take, unlike Ishizaka’s model [17], the set of
nonterminal symbols is given, and as a preliminary study, we adopt Angluin’s [1]
nonterminal membership queries and terminal equivalence queries, to see the
merits and demerits of the subpansive tree in learning CFGs, though nonterminal
membership queries are known to be rather powerful.

In the following, we first define a subpansive tree of a CFG, and discuss a few
fundamental issues on relations between CFGs and subpansive trees that require
a mild restriction on productions. Next, we study the learnability of CFGs to
which a subpansive tree requires that for every production, all nonterminals in
the righthand-side are children of the lefthand-side. We call this class of CFGs
the hierarchical CFGs. In this setting, we design a learning algorithm using ter-
minal equivalence and nonterminal membership queries. This algorithm builds
a hypothesis constructively, by generalizing the most specific productions. Fur-
thermore, we show that for any size of DNF formulas, there exists a subpansive
tree such that if CFGs with a subpansive tree are predictable in polynomial
time, then so is DNF formulas. This implies that the class of hierarchical CFGs
is unlikely to be polynomial-time predictable.

2 Preliminaries

An alphabet is a non-empty finite set of symbols. For an alphabet X , the set
of all finite strings formed from symbols in X is denoted by X∗. The empty
string is denoted by ε, and X+ denotes the set X∗ − {ε} of non-empty strings.
A language over X is a subset of X∗.

Let Σ and N be alphabets that are mutually disjoint Σ∩N = ∅. A production
A → α on N and Σ is an association form a nonterminal A ∈ N to a string
α ∈ (N∪Σ)∗. A context-free grammar (CFG, for short) is a 4-tuple (Σ,N, P, S),
where S ∈ N is the distinguished start symbol and P is a finite set of productions
on N and Σ. Symbols in N are said to be nonterminals, while symbols in Σ are
called terminals. Let α and β be strings in (Σ ∪N)∗. We say that β is derived
from α in one step with G, and denote α ⇒G β, if there exists a production
X → χ in P such that, for some α1, α2 ∈ (Σ∪N)∗, α = α1Xα2 and β = α1χα2.
That is, β is obtained from α by replacing one occurrence of A by α. We extend
the relation ⇒G to the reflexive and transitive closure ⇒∗

G.
Let G = (Σ,N, P, S) be a CFG, and A a nonterminal in N . The language

LG(A) of A is the set {w ∈ Σ∗ | A ⇒∗
G w}. The language L(G) of G just refers

to LG(S). A language L is called a context-free language (CFL, for short) if there
exists a CFG G that identifies L = L(G).



A CFG G = (Σ,N, P, S) is said to be reduced if every A ∈ N satisfies the
following conditions:

1. there exists a string w ∈ Σ∗ such that A ⇒∗
G w,

2. there exist α, β ∈ (Σ ∪N)∗ such that S ⇒∗
G αAβ, and

3. LG(A) �= {ε}.
Throughout this paper, every CFG is assumed to be reduced.

Next, we prepare the models of learning. Let G be a family of CFGs and L
the family of CFLs corresponding to G, that is, L = {L(G) | G ∈ G}. Then, in
the context of identifying a grammar G ∈ G through members and nonmembers
of L = L(G), the family G (or L) is said to be the target concept, and the
grammar G (language L(G) ) is said to be the target grammar (target language,
respectively). As far as we concern in this paper, sets of nonterminals of the
same size are identified. Also, learning algorithms will deal with only a family
GΣ,N of CFGs specified by some fixed Σ and N .

Let G = (Σ,N, P, S) be a target CFG in a family GΣ,N , and L the corre-
sponding language L = L(G). A positive example of G (or, equivalently, L) is a
string w ∈ L, and a negative example of G (or L) is a string w �∈ L. To obtain
these examples or to ensure the target grammar, learning algorithms are allowed
to issue queries of the following types to the teacher: For a pair (w,A) ∈ Σ∗×N ,
a nonterminal membership query NM G(w,A) asks whether w is in LG(A). For a
grammar G′ ∈ G, an equivalence query EQG(G′) asks whether L(G′) = L(G): If
the empty string is replied, then the answer is ‘yes;’ Otherwise, if a non-empty
string w is replied, then the answer is ‘no,’ and w is either a positive counterex-
ample in L(G)− L(G′) or a negative counterexample in L(G′)− L(G).

A family G of CFGs is said to be polynomial-time learnable via equivalence
and nonterminal membership queries if there exists a learning algorithm that
use both equivalence and nonterminal membership queries and exactly identifies
each G ∈ G in polynomial-time with the maximum length of counterexamples. In
the same manner, a family of CFGs is polynomial-time learnable via equivalence
queries alone if it can be identified only with equivalence queries in polynomial-
time.

3 A Context-Free Grammar and a Subpansive Tree

In this section, we introduce the concept of subpansive tree. In the learning
process, the subpansive tree of a CFG works as background knowledge.

Let L and L′ be languages over Σ. Then, L′ is said to be a component of L
if there exist two strings u, v ∈ Σ∗ such that w ∈ L′ implies uwv ∈ L.

Definition 1. Let G = (Σ,N, P, S) be a CFG, and let T = (N,E) be a rooted
tree. Then, T is a subpansive tree of G if it satisfies the following conditions:

1. S is a root of T , and
2. if A ∈ N is an ancestor of B ∈ N on T , then LG(B) is a component of

LG(A).



Example 1. Consider the following CFG G:

G = ({S,A0, A1}, {0, 1, a}, {S → 0A0 | 1A1, A0 → aa | aA1, A1 → a | aA0}, S).
Let Ti (i = 1, 2, 3) be the trees as follows:

T1 =
S

A0 A1

T2 =
S

A0

A1

T3 =
S

A1

A0

For each nonterminal S, A0 and A1, it holds that

LG(S) = {0a2n | n ≥ 1} ∪ {1a2n−1 | n ≥ 1},
LG(A0) = {a2n | n ≥ 1}, LG(A1) = {a2n−1 | n ≥ 1}.

Then, the following is clear:

{0w | w ∈ LG(A0)} ⊆ LG(S), {1w | w ∈ LG(A1)} ⊆ LG(S),
{aw | w ∈ LG(A0)} ⊆ LG(A1), {aw | w ∈ LG(A1)} ⊆ LG(A0).

Hence, every Ti is a subpansive tree of G.

As the relationship between a CFG and a tree, the following proposition
holds:

Proposition 1. Let G be a CFG and T a tree. Then, it is undecidable to
determine whether T is a subpansive tree of G.

Proof. Deciding whether L(G′) ⊆ L(G′′) for given two CFGs G′ and G′′ is
undecidable (cf. [16]). It can be trivially reduced to asking whether a language
LG(B) is a component of LG(A) for some nonterminals A and B on T . ��

However, in the following case, we can easily find out that a tree T is a
subpansive tree of a CFG G.

Proposition 2. Let G = (Σ,N, P, S) be a CFG and T = (N,E) a tree. If for
every edge (A,B) ∈ E of T a production from A to a string that contains B
exists in G, then T is a subpansive tree of G.

Proof. Straightforward from the definition of a subpansive tree. ��

By Proposition 2, we can design the algorithm SubpansiveTree to construct one
of the subpansive trees of a given CFG as Figure 1. For the CFG G given in
Example 1, the algorithm SubpansiveTree constructs just the tree T1.



SubpansiveTree
Input : A CFG G = (Σ, N,P, S).
Output : A subpansive tree (N,E) of G.
E := ∅; V := {S};
while V �= N do begin

for each A ∈ V do
if there exists a A → α1Bα2 ∈ P such that B /∈ V then

add (A,B) to E and add B to V ;
end /* while */
output (N, E);

Fig. 1. An algorithm to construct a subpansive tree from a CFG

4 A Hierarchical CFG

In order to discuss the problem how to learn a CFG in terms of a subpansive tree,
we introduce an appropriate class of CFGs, which we coin a name, hierarchical
CFGs or HCFGs, from logic programming [21].

Definition 2. A CFG G = (Σ,N, P, S) is said to be hierarchical or an HCFG
if there exists a mapping (called a level mapping [21]) f : N → {1, . . . , |N |} such
that, for each production A → α ∈ P and every nonterminal B occurring in α,
A �= B implies f(A) > f(B). The class of all HCFGs is denoted by HCFG.
Proposition 3. For a CFG G = (Σ,N, P, S), the problem of determining
whether G is hierarchical is decidable.

Proof. By Definition 2, there exists a mapping f : N → {1, . . . , |N |}. Since the
number of all mappings from N to {1, . . . , |N |} is finite, the problem is decidable.

��
We associate an HCFG G with a subpansive tree by the level mapping of G.

Let T be a tree (N,E) and f be a mapping from N to {1, . . . , |N |}. Then, T is
leveled by f if f(A) > f(B) holds for each (A,B) ∈ E. Then, it is obvious the
following proposition.

Proposition 4. Let G be an HCFG (N,Σ, P, S) and T be a tree (N,E). Then,
there exists a level mapping f ofG such that T is leveled by f iff T is a subpansive
tree of G.

An HCFG has the following useful properties for learning languages con-
structively.

Proposition 5. Let G = (Σ,N, P, S) be a HCFG, T be a subpansive tree for
G, and k be the depth of T . Then, for any w ∈ L(G), there exists a parse tree
of w whose depth is at most k + |w|+ 1.



Proof. Let TG(w), or simply T (w), be a parse tree of w in G. For an internal
node A of T (w), the yield of A is defined as a concatenation of the leaves in
left-to-right order on the sub-tree of T (w) whose root is A.

For every parent-child relationship (A,B) in T (w), if A and B are labeled
by same nonterminal and the length of A’s yield is same as one of B’s yield,
then the tree obtained by replacing the sub-tree of T (w) rooted by A with one
rooted by B is also a parse tree of w. Therefore, without loss of generality, we
can assume that, if A and B have a parent-child relationship in T (w), then the
relationship is also preserved in T or the length of B’s yield is less than one
of A’s yield. Under this assumption, the statement can be easily proved by the
induction on the length of w. ��
By Proposition 5, if the maximum number of nonterminals occurring in the right-
hand side of each production is bounded by some constant, then each parse tree
of w ∈ L(G) is computed in polynomial time.

Consider the language family {L(G) | G ∈ HCFG}. The following proposition
claims that the language family contains all regular languages.

Proposition 6. For each regular expression E, there exists a HCFG G such
that L(G) is equivalent to the language LE represented by E.

Proof. We prove the statement by the induction on the length of E.
If E = φ, then let P be an empty set. If E = a for some a ∈ Σ ∪ {ε}, then

let P be the set {S → a}. Furthermore, let G be a CFG (Σ, {S}, P, S).
Let E1, E2 be regular expressions, and let Gi = (Σ,Ni, Pi, Si) be a CFG

representing LEi . Without loss of generality, we can assume that N1 ∩ N2 = ∅
and S /∈ N1 ∪N2. Then, we construct P0 as follows:

1. If E = (E1 + E2), then let P0 be {S → S1 | S2};
2. If E = (E1E2), then let P0 be {S → S1S2};
3. If E = (E∗

1 ), then let P0 be {S → ε | SS1}.
Furthermore, let G be a CFG (Σ,N, P, S), where N = {S} ∪ N1 ∪ N2 and
P = P0 ∪ P1 ∪ P2. It is easy to show that the set L(G) is equal to LE , and that
if both G1 and G2 are in HCFG, so is G. ��

The language family {L(G) | G ∈ HCFG} properly contains all regular lan-
guages: Consider the language L = {anbn | n ≥ 1}. Then, L is not regular but
there exists an HCFG G = ({a, b}, {S}, {S → aSb | ab}, S) such that L = L(G).

On the other hand, the language family {L(G) | G ∈ HCFG} is contained
by the language family {L(G) | G is a CFG }. However, the properness remains
open.

5 Generalization with a Subpansive Tree

In this section, we introduce the generalization under a subpansive tree, which
will be essential for the learning algorithm of CFGs discussed in Section 6. We
introduce three kinds of generalizations; generalization on strings over (Σ∪N)∗,
on productions, and on the set of productions.



Definition 3. Let G = (Σ,N, P, S) be a CFG and T = (N,E) be a subpansive
tree ofG. Let α, β be non-empty strings in (N∪Σ)+. Then, α ismore general than
β under T , denoted by α �T β, if there exist β1, β3 ∈ (N ∪Σ)∗, β2 ∈ (N ∪Σ)+

and A ∈ N satisfy the following:

1. α = β1Aβ3,
2. β = β1β2β3, and
3. every nonterminal in β2 is either A or a descendant B ∈ N .

The relation �T is extended to the reflexive and transitive closure �∗
T .

Definition 4. Let G = (Σ,N, P, S) be a CFG, and let p = A → α and q =
A → β be productions on Σ and N from a nonterminal A ∈ N . Then, p is more
general than q under T , denoted by p �T q, if α �T β.

In the above definition, p and q are not necessarily elements of P for a CFG
G = (Σ,N, P, S).

Definition 5. Let Π be the set of all the productions on N and Σ, and let π1

and π2 be finite subsets of Π . Then, π1 is more general than π2 under T , denoted
by π1 �T π2, if for every p2 ∈ π2 there exists p1 ∈ π1 that is more general than
p2 under T .

In order to associate the generalization in Definition 5 with a subpansive tree,
we introduce the following two mappings ΓT and Γn

T over 2
Π , which is motivated

by the TP operator famous in logic programming (cf. [21]).

Definition 6. Let G be a CFG and T be a subpansive tree of G. Also let Π be
the set of all the productions on G. Then, the mapping ΓT : 2Π → 2Π is defined
as follows:

ΓT (π) = {q ∈ Π | q �T p for some p ∈ π}
for π ⊆ Π . Furthermore, for a finite set π ⊆ Π and non-negative integer n,
Γn

T (π) is defined as follows:

Γ 0
T (π) = π

Γn
T (π) = ΓT

(
Γn−1

T (π)
)
for n ≥ 1.

Now, we investigate some properties of ΓT . In the remainder of this section,
the notion G = (Σ,N, P, S) always denotes a reduced HCFG, T is a subpansive
tree of G, Π is the set of all the productions on G, and π is a finite subset of Π .

Lemma 1. For each p ∈ Π , the size of ΓT ({p}) is bounded by a polynomial
with |N | and |p|.
Proof. Let p be a production A → α. By the definition of ΓT , if B → β ∈
ΓT ({p}), then B = A and β �T α. Since β is obtained by replacing a substring
of α with one nonterminal, there exist at most |α| · (|α|+ 1) · |N | candidates for
β and is a polynomial with |N | and |p|. ��



Lemma 2. Let m be the maximum length of p ∈ π. Then, the size of Γn
T (π)

(n ≥ 1) is bounded by a polynomial with |N |, m and |π|.
Proof. It follows from Lemma 1. ��
Lemma 3. Let m be the maximum length of p ∈ π. Then, there exists a poly-
nomial poly such that Γn

T (π) = Γn+1
T (π) for each n ≥ poly(m, |N |, |π|).

Proof. Let p be a production A → α ∈ Π . Then, the number of all productions
q satisfying q �T p is bounded by |α| · (|α|+ 1) · |N |. Furthermore, since p �T q
and q �T r implies p �T r, for any non-negative integer n, the size of the set
Γn

T ({p}) is bounded by |α| · (|α|+ 1) · |N |. Then, the size of Γn
T (π) is bounded

by m · (m+ 1) · |N | · |π| for each n ≥ 0.
Furthermore, by the definition of Γn

T , Γ
n
T is monotonic with respect to n,

that is,

1. Γ i
T (π) ⊇ Γ j

T (π) for i ≥ j, and
2. if Γ i

T (π) = Γ i+1
T (π) for some i, then Γ j

T (π) = Γ i
T (π) for each j (j ≥ i).

Hence, we can set poly(m, |N |, |π|) to m · (m+ 1) · |N | · |π|. ��
Lemma 4. Let p be a production A → α ∈ P . Then, there exist w ∈ LG(A)
and non-negative integer n such that p ∈ Γn

T ({A → w}).
Proof. Since G is reduced, there exists a string w ∈ Σ+ such that A ⇒G

α ⇒∗
G w, α = u0A1u1A2 · · ·Amum, w = u0v1u1v2 · · · vmum, and for each i

(i = 1, 2, . . . ,m) vi ∈ LG(Ai) − {ε}. Since the string α is more general than w,
it holds that (A → α) �T (A → w). Hence, it holds that p ∈ Γn

T ({A → w}). ��
Since the properties of the mapping Γn

T given in the above lemmas hold in the
class of all CFGs, it is useful to discuss learnability of CFGs in the framework of
identification in the limit [14]. However, it is not suitable to the polynomial time
learning, because the size of the set Γn

T (P ) and the length of each production in it
are monotonically increasing on n and the length of the given positive example.

On the other hand, for an HCFG G, the minimal generalizations of G can
be easily computed. Let G be an HCFG (Σ,N, P, S) and T be a subpansive
tree (N,E) of G. Then, for each A ∈ N , TA denotes a subtree (NA, EA) of T
satisfying the following conditions:

1. EA = ∅ if A is a leaf of T ; EA = {(A,B) ∈ E | B ∈ N} otherwise.
2. NA is the set consisting of A and all children of A.

Then, the next lemma holds.

Lemma 5. Let G = (Σ,N, P, S) be an HCFG and T be a subpansive tree of
G. Then, for each p = A → α ∈ P , there exists w ∈ LG(A) and a non-negative
integer n ≤ |w| such that p ∈ Γn

TA
({A → w}).

The above lemma tells that it is enough to consider the generalization on
the subtree TA of the subpansive tree for an HCFG. In the following section,
we propose the procedure Generalize which finds the minimal generalizations by
using nonterminal membership queries.



6 Learnability of HCFGs with a Subpansive Tree

In this section, we discuss learnability of HCFGs in our setting: the subpansive
tree of a target HCFG is given as a background knowledge, and two types of
queries, nonterminal membership and equivalence queries are available. Then, for
a tree T , letHCFG[T ] denote the family {G ∈ HCFG | T is a subpansive tree of G}.

Theorem 1. Let T be a tree. Then, HCFG[T ] is polynomial-time learnable via
equivalence and nonterminal membership queries.

We give the learning algorithm Learn HCFG in the following proof, which is a
constructive algorithm, because the algorithm makes the most specific hypoth-
esis, and repeats generalizing it until the target CFG is obtained.

Proof. Consider the algorithm Learn HCFG as Figure 2, which mainly consists
of two procedures, Generalize and Diagnose. Note that in the first construction
of P nonterminal membership queries NM G∗(ε,A) for A ∈ N are invoked.

Learn HCFG
Input : A subpansive tree T = (N,E) of a target CFG G∗
Output : A CFG G = (Σ, N, P, S) such that L(G) = L(G∗)
P := {A → ε | ε ∈ LG∗ (A)}; G := (Σ, N,P, S);
while EQG∗(G) replies w do begin

if w ∈ L(G) − L(G∗) then /* w: negative counterexample */
P := Diagnose(w, P );

else /* w: positive counterexample */
G := Generalize(w, G, T );

end /* while */
output G;

Fig. 2. The procedure Learn HCFG

The procedure Diagnose was proposed by Angluin [1] originally for the class
of k-bounded CFG in which the right-hand side of each production has at most
k nonterminals for a fixed integer k. In our algorithm, the procedure Diagnose
finds a false production, for example, A → α in a hypothesis P , and replaces
it with the productions that associate A to strings derived from α in one step.
In these productions, the number of occurrences of nonterminals in right-hand
side is bounded by some constant depending on the target G∗. By Proposition 5,
Diagnose finds a false production in polynomial time, and the number of new
productions is also bounded by a polynomial.

On the other hand, in order to design the procedure Generalize in Figure 3,
we prepare two notions, crrG(W,A) and redP (Q).



Let G = (Σ,N, P, S) be a CFG,W a finite subset of Σ+ and A a nonterminal
in N . Also let P0 be a set {A → w | w ∈ W}. Then, the correct generalizations
of W with respect to A, denoted by crrG(W,A), is the set R satisfying the
following conditions:

1. R �∗
T P0,

2. ΓTA(R) = R, and
3. for each A → u0B1u1 · · ·um−1Bmum in R, there exists u0v1u1 · · ·um−1vmum

in W such that vi ∈ LG(Bi) for each 1 ≤ i ≤ m.

Let P and Q be sets of productions. Then, the reduced set redP (Q) of Q
with P is a subset R of Q which satisfies the following: (1) for any production
A → α in Q, A ⇒∗

R∪P α, and (2) for any R′ ⊂ R, there is A → α in Q such
that A �⇒∗

R′∪P α. Here, ⇒P for a set of productions P implicitly means ⇒G for
a CFG whose set of productions is P .

Generalize
Input : w ∈ Σ+; a CFG G0 = (Σ,N, P0, S); a tree T ; a target CFG G∗;
/* T is a subpansive tree of G∗ */
Output : A CFG G = (Σ, N, P, S) such that L(G) ⊇ L(G0) ∪ {w}.
P := P0;
for each A ∈ N do begin

WA := ∅;
for each substring u of w do

if NM G∗(u, A) replies yes then WA := WA ∪ {u};
end /* for each */
mark := {A ∈ N | A is a leaf of T};
for each A ∈ mark do P := P ∪ redP (crrG(WA, A));
while mark �= N do begin

if all children of A ∈ (N − mark) are in mark then
P := P ∪ redP (crrG(WA, A));

mark := mark ∪ {A};
end /* while */
output G;

Fig. 3. The procedure Generalize

In the procedure Generalize in Figure 3 we deal with crr and red directly.
Note that we can check the condition 3 in crr by using nonterminal membership
queries.

In the while loop the enumeration of nonterminals is executed in a bottom-
up manner, and the number of iterations of the loop is bounded by the depth
of the given subpansive tree T . Furthermore, by Lemma 1, 2, and 3, the set
redP (crrG(WA, A)) can be computed in polynomial time with |P | and |N |.
Therefore, the amount time of running Generalize is bounded by a polynomial



with |G0|, |w| and |T |. Since the size of P is bounded by a polynomial at each
step of iteration in the learning algorithm Learn HCFG , it terminates in poly-
nomial time. ��

On the other hand, let DNFn be a family of DNF formulas over n Boolean
variables. Then, we can show the following theorem.

Theorem 2. For each n ≥ 0, there exists a subpansive tree such that, if HCFG
is polynomial-time predictable, then so is DNFn.

Proof. Let d = t1∨· · ·∨tm be a DNF formula over n Boolean variables {x1, . . . , xn}.
Then, let T be a tree:

T =


{S,X1, . . . , Xn},

⋃
1≤i≤n

{(S,Xi)}

.

We show the statement by the prediction-preserving reduction [24].
The word transformation f is an identity function, that is, f(e) = e. The

representation transformation g is defined as follows. First, for each term ti in
d, h(ti) is a production S → w1 · · ·wn, where

wj =



1 if ti contains xj ,
0 if ti contains xj ,
Xi otherwise.

Furthermore, G0 is the following set of productions
n⋃

j=1

{Xj → 0|1}. Then, for

each d ∈ DNFn, a representation transformation g is defined as:

g(d) =
m⋃

i=1

h(ti) ∪G0.

Note here that T is a subpansive tree of g(d), and the size of g(d) is at most
|d|(n+ 1) + 4n.

For e ∈ {0, 1}n, it holds that

e satisfies d (e ∈ d)
⇐⇒ there exists an i (1 ≤ i ≤ m) such that e satisfies ti
⇐⇒ there exists an i (1 ≤ i ≤ m) such that e ∈ L({g(ti)} ∪G0)
⇐⇒ f(e) ∈ L(g(d)).

Hence, there exists a subpansive tree T that predicting DNFn reduces to pre-
dicting HCFG. By using the property of prediction-preserving reduction given
by Pitt and Warmuth [24], we can conclude the statement. ��
Hence, we conjecture that HCFG is not polynomial-time predictable. According
to [3, 20, 24], we may also conjecture that HCFG not polynomial-time learnable
via equivalence queries alone.



7 Concluding Remarks

We have proposed a new scenario for learning a CFL with a subpansive tree.
The subpansive tree characterizes a language by sublanguages, modeling a back-
ground knowledge in natural language acquisition.

Through the level mapping technique, we have defined the subclass of CFGs
that we named hierarchical CFGs, and associated with a subpansive tree. We
have shown that all regular languages are properly contained in the languages
generated by the class of hierarchical CFGs, and that the class of hierarchical
CFGs is efficiently learnable by nonterminal membership queries and equivalence
queries. We also have shown that the class of hierarchical CFGs seems hard to
predict in polynomial time.

Consider, finally, a subpansive tree that lacks some nodes, an incomplete
subpansive tree. An incomplete subpansive tree is constructed from a proper
subset of nonterminals of a given complete subpansive tree. This is comparable
to a natural language in which only some parts of speech are fixed. Arguably,
any natural language has contentive categories, such as noun, verb, adjective,
and adposition. These reflect epistemological cognitive categories that roughly
depict entities, actions, properties, and relations. In an influential hypothesis
of linguistic theory [11, 13], a factor of cross-linguistic variation is attributed to
other minor categories, such as determiner and complementizer, which may be
absent in some languages. Thus, grammatical inference with incomplete sub-
pansive trees comes closer to natural language acquisition, and if it can succeed,
we may also find a useful application in computer science, such as extracting
from a program metafunctions and/or subfunctions that are recurrently used
but unknown.

Yet, to derive a complete subpansive tree from incomplete ones, we have to
consider all the complete subpansive trees that are possible, the number of which
is proportional to exponential of nonterminals of the incomplete subpansive tree.
This seems rather formidable, but one of our future research topics is to discuss
the learnability of languages with incomplete subpansive trees and its implica-
tions. Another is to restrict the membership queries to terminals, and drop the
equivalence queries all together. After all, humans, even adults, are unconscious
about the precise structure of a given sentence, and they cannot completely de-
scribe their grammar (target) or know how much a child has developed his or
hers (hypothesis); let alone evaluating the differences and giving counterexam-
ples, though the child may be told what can be said and what cannot. In the
meantime, it also pays to investigate whether or not the class of hierarchical
CFGs is a proper subclass of CFGs, a task we are not yet able to cover in this
preliminary study.
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