A Method for Analyzing Complex Go Capturing Races

Teigo Nakamura

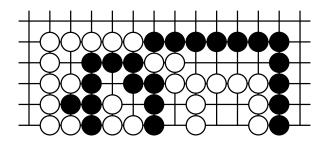
Department of Artificial Intelligence Kyushu Institute of Technology

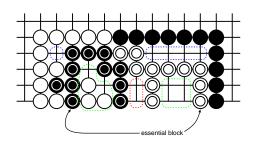
teigo@ai.kyutech.ac.jp
http://www.dumbo.ai.kyutech.ac.jp/~teigo/

January 12, 2011

- Introduction
 - Application of CGT to Go capturing races
 - Liberty counting game
 - Assigning liberty scores to terminal nodes
 - Cooling by 2
 - Example analyses of capturing races
- We extend our methodology to be applied to more complex capturing races in which three or more groups are involved

- Capturing Races (or Semeais)
 - particular kind of life and death problem in which two adjacent confronting groups are fighting to capture the opponent's group each other



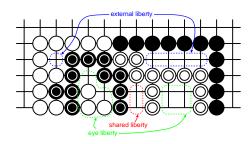


Essential block

- A block of black or white stones which must be saved from capture.
- Capturing an essential block immediately decides a semeai.

Liberty region

- A region which is surrounded by at least one essential block and some other essential blocks and safe blocks.
- A liberty region is called external region if its boundary does not consist of the essential blocks of different color.



- External liberty
 - A liberty of an essential block in an external liberty region
- Shared liberty
 - A common liberty of a Black's essential block and a White's essential block
- Eye liberty
 - A liberty in a nakade shape eye

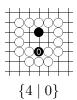
- In order to analyze semeais,
 - count the number of liberties for each subregion of an essential block,
 - sum up the numbers, then
 - the player who has the more liberties is the winner (if there is no shared liberty)
- It's a really simple procedure, but
- the number of liberties may not always be a number, but a game whose value changes by each player's move.
- We count the number of liberties using CGT.

Liberty Counting Game

- Liberty Counting Game (LCG)
 - Score is the number of liberties of essential blocks
 - Black's liberties are positive and White's are negative

$$\left\{G^L \;\middle|\; G^R\right\}$$

• Examples:



 It seems easy to get these CGT descritions, but in fact, we have to resolve a subtle problem.

- A semeai game is a sum of liberty counting games.
- Assumed that each summand has just one essential block.
- Rules for play are same as Go. Suicidal moves are forbidden except for the last winning move.
- Player who fills all the liberties of opponent's all essential blocks in all summands is the winner.
- In case of semeais, the smallest incentive is 1-ish, because the attacker can always fill the opponent's liberties one by one.
- So, cooling by 2 degrees works to analyze semeai games.

Evaluation Method for Semeai Games

Supposed that G is a semeai game and q is Cool(G, 2).

- Case 1: q is an integer
 - If q > 0, Black wins.
 - If q < 0, White wins.
 - If q = 0, first player wins.
- Case 2: n+1>g>n (for some integer n)
 - If Black plays first, he can round g up to n+1
 - If White plays first, he can round g down to n
 - Check the resulting adjustment value using the conditions of case 1.
- Case 3: q <> n (for some integer n)
 - If Black plays first, he can round g up to n+1
 - If White plays first, he can round g down to n-1
 - Check the resulting adjustment value using the conditions of case 1.

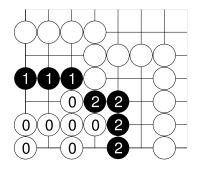
- Problem 1
- → Go
- Problem 2
- → Go
- Problem 4

Problem 3

▶ Go

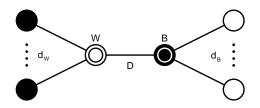
Complex Capturing Races

- Complex capturing races are:
 - capturing races which involve multiple essential blocks



- Static analysis for complex capturing races
 - Katsuhiko Nakamura: "Static analysis based on formal models and incremental computation in Go programming", Theoretical Computer Science, Vol.349, pp.184–201, (2005).
- Relation among groups of Black's and White's blocks are described using semeai graph.
- A method for static analysis to find the outcome of the entire capturing races using each local outcome between confronted groups

- Node: Block of connected stones
 - Circled nodes are essential blocks
 - Values with nodes are eye liberties
 - Values of alive blocks are ∞
- Link
 - denotes that two blocks of different color come in contact, or share a region of empty points
 - Values with links are liberties between blocks



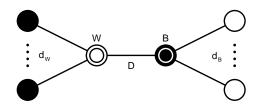
Outcome of Simple One-on-One Semeais

 Outcome of capturing races is determined by the values of d_B, d_W, D, B , and W

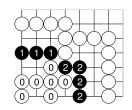
 d_B : Total external liberties of Black's essential blocks d_W : Total external liberties of White's essential blocks

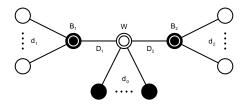
D Shared liberties

B: Eye liberties of Black's essential blocks W: Eye liberties of White's essential blocks



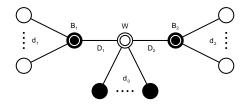
Semeai Graph of Complex Semeais





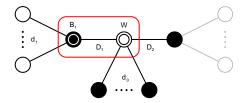
Process to Analyze Complex Semeais

- For each pair of facing essential blocks,
- assume that the other essential blocks are safe.
- apply the procedure to decide the local outcome of the pair



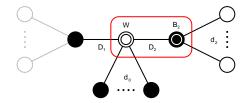
Process to Analyze Complex Semeais

- For each pair of facing essential blocks,
- assume that the other essential blocks are safe.
- apply the procedure to decide the local outcome of the pair



Process to Analyze Complex Semeais

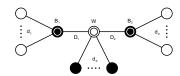
- For each pair of facing essential blocks,
- assume that the other essential blocks are safe.
- apply the procedure to decide the local outcome of the pair



Outcome Table of One-vs-Two Semeais

- Y wins
- (2) $X1 \Longrightarrow Y \longleftarrow X2$: X wins (with some exceptions)
- (3) $X1 \Longrightarrow Y \Longrightarrow X2$: Y wins
- (4) $X1 \Longleftrightarrow Y \Longleftrightarrow X2$: Y wins
- (5) $X1 \Longleftrightarrow Y \Longrightarrow X2$: Y wins
- (6) $X1 \Longleftrightarrow Y \Longleftrightarrow X2$: Y wins
- (7) $X1 \longleftrightarrow Y \longleftrightarrow X2$: First player wins (with some exceptions)
- (8) $X1 \longleftrightarrow Y \Longrightarrow X2$: Y wins
- (9) $X1 \longleftrightarrow Y \iff X2$: First player wins
- (10) $X1 \longleftrightarrow Y \Longleftrightarrow X2$: Y wins

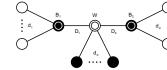
 $\left(\begin{array}{c}X\Longrightarrow Y\ :\ \ \text{X wins if X plays first and Y can}\\ \text{not win even if Y plays first}\\ X\longleftrightarrow Y:\ \ \text{First player wins}\\ X\Longleftrightarrow Y:\ \ \text{Seki}\end{array}\right.$



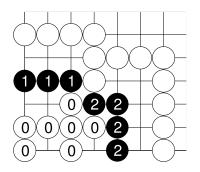
Outcome Table of One-vs-Two Semeais

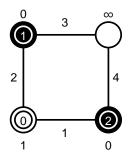
- (1) $X1 \longleftarrow Y \Longrightarrow X2$: Y wins
- (2) $X1 \Longrightarrow Y \Longleftarrow X2$: X wins (with some exceptions)
- (3) $X1 \Longrightarrow Y \Longrightarrow X2$: Y wins
- (4) $X1 \Longleftrightarrow Y \Longleftrightarrow X2$: Y wins
- (5) $X1 \Longleftrightarrow Y \Longrightarrow X2$: Y wins
- (6) $X1 \Longleftrightarrow Y \Longleftrightarrow X2$: Y wins
- (7) $X1 \longleftrightarrow Y \longleftrightarrow X2$: First player wins (with some exceptions)
- (8) $X1 \longleftrightarrow Y \Longrightarrow X2$: Y wins
- (9) $X1 \longleftrightarrow Y \Longleftarrow X2$: First player wins
- (10) $X1 \longleftrightarrow Y \Longleftrightarrow X2$: Y wins

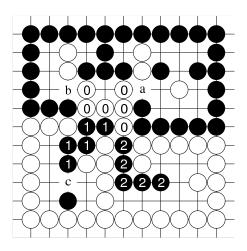
```
\left(\begin{array}{c}X\Longrightarrow Y\ :\ \ \text{X wins if X plays first and Y can}\\ \text{not win even if Y plays first}\\ X\longleftrightarrow Y:\ \ \text{First player wins}\\ X\Longleftrightarrow Y:\ \ \text{Seki}\end{array}\right.
```

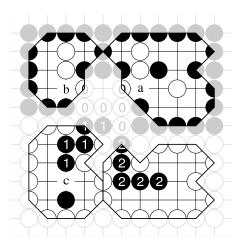


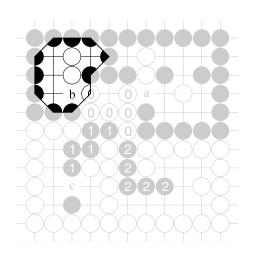
Example of One-vs-Two Semeais





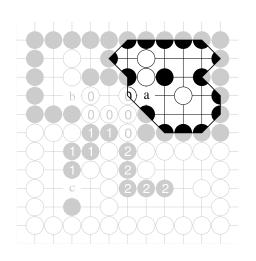






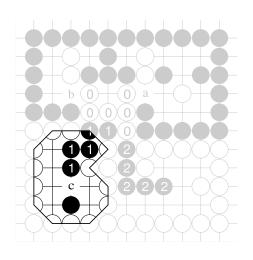
game: $\{0 \mid -4\}$

cooled value: -2*



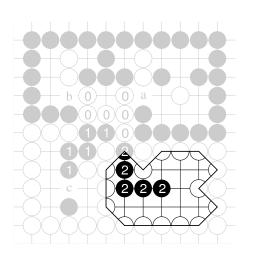
game:
$$\{0 \mid |-2|-6\}$$

cooled value: $-2\uparrow$



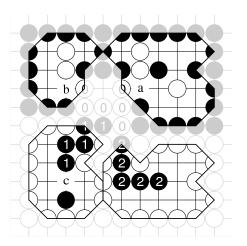
game: $\{6 \mid 2\}$

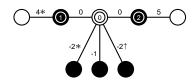
cooled value: 4*

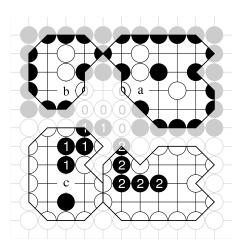


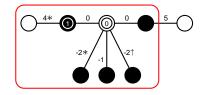
game: 5

cooled value: 5

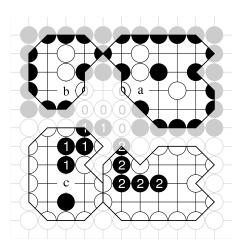


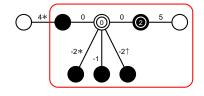






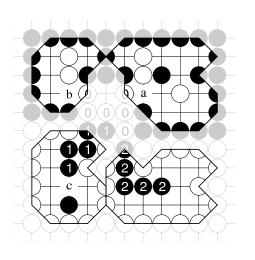
 W_0 vs B_1 : $-1\uparrow$

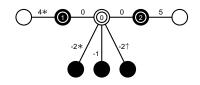




 W_0 vs B_1 : $-1\uparrow$

 W_0 vs B_2 : $\uparrow *$



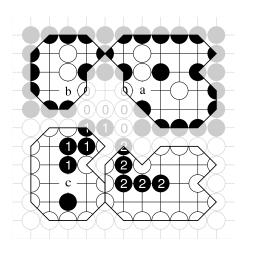


 W_0 vs B_1 : $-1\uparrow$

 W_0 vs $B_2: \uparrow *$

 $B_1 \longleftrightarrow W_0 \longleftrightarrow B_2$

First player wins(?)



 W_0 vs B_1 : $-1\uparrow$ Black's winning move is a

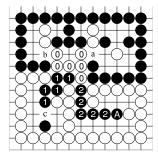
 W_0 vs B_2 : $\uparrow *$ Black's winning moves are b and c

They are different and Black cannot play both at the same time \Rightarrow Black cannot win!

How to judge the total outcome using local outcomes

- Onstruct a semeai graph from a complex capturing race as follows:
 - decompose essential blocks to subgames
 - calculate cooled value of librety count for each subgame and assign the value to each link
- analyze outcome between two local pair of nodes and get a set of winning moves
- judge the total outcome using the determination table
 - check if two sets of winning moves have non empty intersection
 - if only one player has some common winning moves, the player wins, and
 - if both players have some common winning moves, the first player wins

Another Example



 \boldsymbol{A} is added in the lower right

 $lackbox{0}$ W_0 vs B_2 semeai

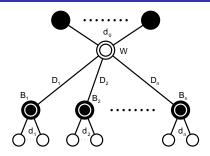
$$6 + (-2*) + (-2\uparrow) + (-1) = 1\uparrow *$$

- $1\uparrow * <> 1$ and the first player wins in this part
 - Black's winning moves are a and b
- Entire capturing race

$$B_1 \longleftrightarrow W_0 \longleftrightarrow B_2$$

- lacktriangle A set of Black's winning moves for $B_1 \longleftrightarrow W_0$ is $\{a\}$
- A set of Black's winning moves for $W_0 \longleftrightarrow B_2$ is $\{a, b\}$
- Black a belongs in the both sets ⇒ Black can win if Black plays first
- and also White can win if White plays first.
- The final outcome is the first player wins.

\blacksquare Semeai Graph of 1-vs-n Semeais

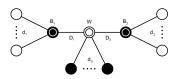


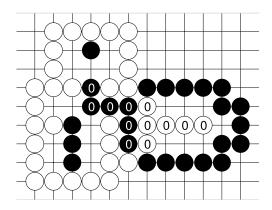
- We suppose that threre is no shared liberty, and $D_i = 0$ for all i.
- A local semeai game is $G_i = W + d_0 + B_i + d_i$.
- 1's side (White) wins the entire semeai, if he can win at least one local semeai of G_i .
- In order for n's side (Black) to win the entire semeai, he has to win all the local semeais of G_i simultaneously.
- AND/OR combinatorial game?

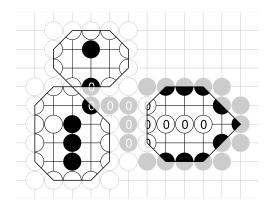
- One-vs-Two semeais with combinatorial games of liberty count
 - Static judgement table [K.Nakamura (2005)]
 - Local outcomes + Set of winning moves
- General case of 1-vs-n semeals is a new type of combinatorial games?
 - The n's side cannot win if there is no common winning move for all local semeais.
 - But if there are some common winning moves for all local semeais, ...?

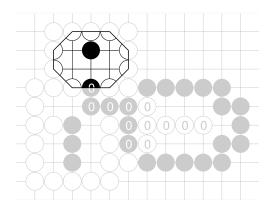
Outcome Table of One-vs-Two Semeais

- (1) $X1 \longleftarrow Y \Longrightarrow X2$: Y wins
- (2) $X1 \Longrightarrow Y \Longleftarrow X2$: X wins (with some exceptions)
- (3) $X1 \Longrightarrow Y \Longrightarrow X2$: Y wins
- (4) $X1 \Longleftrightarrow Y \Longleftrightarrow X2$: Y wins
- (5) $X1 \Longleftrightarrow Y \Longrightarrow X2$: Y wins
- (6) $X1 \Longleftrightarrow Y \Longleftrightarrow X2$: Y wins
- (7) $X1 \longleftrightarrow Y \longleftrightarrow X2$: First player wins (with some exceptions)
- (8) $X1 \longleftrightarrow Y \Longrightarrow X2$: Y wins
- (9) $X1 \longleftrightarrow Y \Longleftarrow X2$: First player wins
- (10) $X1 \longleftrightarrow Y \Longleftrightarrow X2$: Y wins

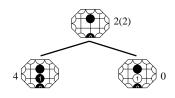




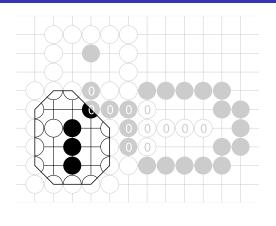




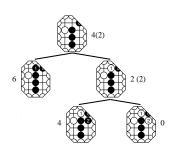
subgame A:



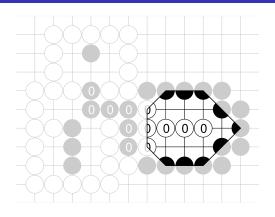
game: $\{4 \mid 0\}$ cooled value: 2*



subgame B:



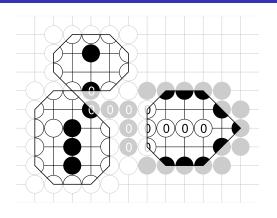
game: $\{6 \mid \mid 4 \mid 0\}$ cooled value: $4\uparrow$



subgame C:

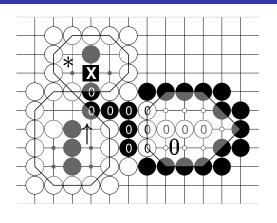
game: -7

cooled value: -7



Total:
$$-1\uparrow *$$

 $(= 2* + 4\uparrow - 7)$
 $-1\uparrow * <> -1$

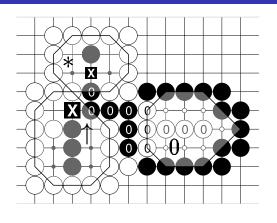


Total:
$$-1\uparrow *$$

 $-1\uparrow * <> -1$

$$(= 2* + 4\uparrow - 7)$$

Black:
$$-1\uparrow * \Rightarrow 0$$



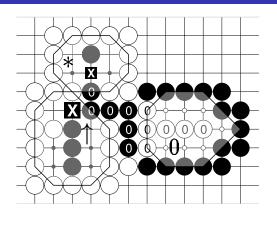
Total:
$$-1\uparrow *$$

$$(= 2* + 4\uparrow - 7)$$

$$-1\uparrow * <> -1$$

$$\mathsf{Black} \colon -1 \!\!\uparrow \!\! * \quad \Rightarrow 0$$

White:
$$-1\uparrow * \Rightarrow -2$$



Total:
$$-1\uparrow *$$

$$(= 2* + 4\uparrow - 7)$$

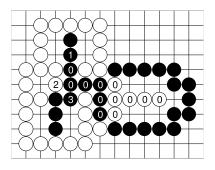
 $-1\uparrow * <> -1$

$$\mathsf{Black} \colon -1 \!\!\uparrow \!\! * \quad \Rightarrow 0$$

White:
$$-1\uparrow * \Rightarrow -2$$

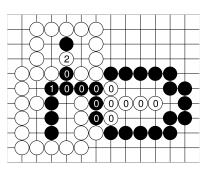
The first player wins

Success for Black

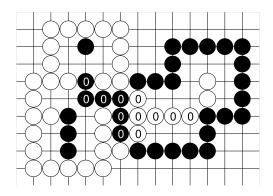


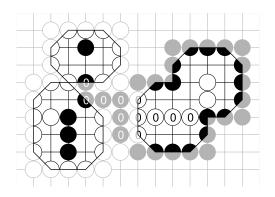
Black gets tedomari

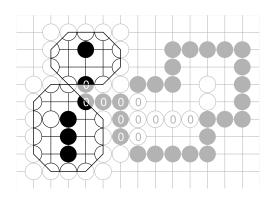
Failure for Black



White gets tedomari





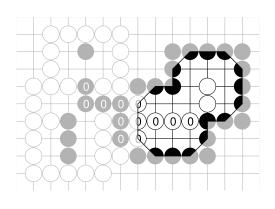


subgame A:

game : $\{4 \mid 0\}$ cooled value : 2*

subgame B:

game: $\{6 \mid \mid 4 \mid 0\}$ cooled value : $4\uparrow$



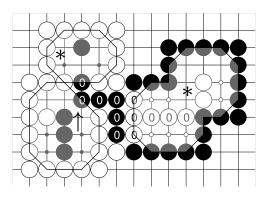
subgame A:

game : $\{4 \mid 0\}$ cooled value : 2*

subgame B:

game: $\{6 \mid \mid 4 \mid 0\}$ cooled value : $4\uparrow$

subgame C:



Total: -1 > -1

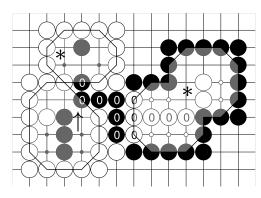
subgame A:

game : $\{4 \mid 0\}$ cooled value : 2*

subgame B:

game: $\{6 \mid \mid 4 \mid 0\}$ cooled value : $4\uparrow$

subgame C:



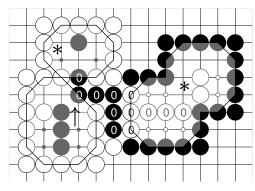
Total: $-1\uparrow > -1$ Black: $-1\uparrow \Rightarrow 0$ subgame A:

game : $\{4 \mid 0\}$ cooled value : 2*

subgame B:

game: $\{6 \mid \mid 4 \mid 0\}$ cooled value : $4\uparrow$

subgame C:



 $\begin{array}{lll} \mbox{Total:} & -1 \uparrow & > & -1 \\ \mbox{Black:} & -1 \uparrow & \Rightarrow 0 \\ \end{array}$

White: $-1\uparrow \Rightarrow -1$

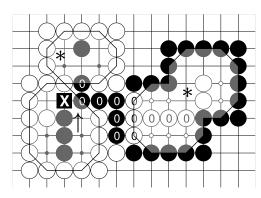
subgame A:

game : $\{4 \mid 0\}$ cooled value : 2*

subgame B:

game: $\{6 \mid \mid 4 \mid 0\}$ cooled value : $4\uparrow$

subgame C:



Total: $-1\uparrow$ > -1

Black: $-1\uparrow \Rightarrow 0$

White: $-1\uparrow \Rightarrow -1$

The first player wins

subgame A:

game : $\{4 \mid 0\}$ cooled value : 2*

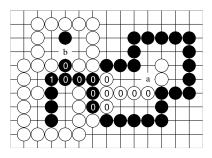
subgame B:

game: $\{6 \mid \mid 4 \mid 0\}$ cooled value : $4\uparrow$

subgame C:

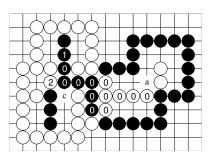
 $\begin{array}{ll} \text{game}: & \{-5 \mid -9\} \\ \text{cooled value}: & -7* \end{array}$

Success for Black

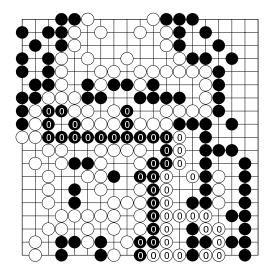


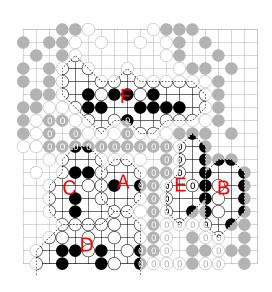
(a and b are miai) Black gets tedomari

Failure for Black



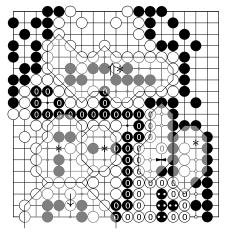
(a and c are miai)White gets tedomari





subgames

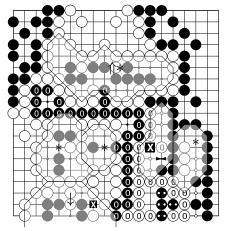
Analysis



Total =
$$(2*) + (-2*) + (3*) + (2\downarrow) + (-4 \rightarrow) + (6 \uparrow *) + 2 - 10 = -1 \uparrow \rightarrow \text{Range}: 0 > -1 \uparrow \rightarrow > -1$$

Black wins by one, if he plays first.

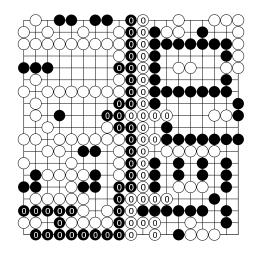
Analysis



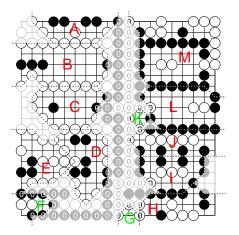
Total =
$$(2*) + (-2*) + (3*) + (2\downarrow) + (-4 -) + (6 \uparrow *) + 2 - 10 = -1 \uparrow -$$
 Range : $0 > -1 \uparrow - > -1$

Black wins by one, if he plays first.

Black to move



Subgames



	value
A	$1\frac{3}{4}$
В	$2\{-3 \mid 0^3\}$
С	$3\{-1 \mid 0\}$
D	3↑*
\mathbf{E}	$1\frac{3}{4}$
F	3
G	-1
Н	$-2\frac{1}{2}$
I	$-4\downarrow$
J	-2*
K	-1
L	$-3\{0 \mid +2\}$
M	$-2\{0^2 \mid +3\}$
Total	-1 ish

✓ return